π§ Everyone talks about AI integrations β but most developers still donβt know how to wire up Spring Boot with LLMs properly.
In this post, Iβll show you exactly how I built a fully local ChatGPT-style service inside my Spring Boot 3.3 app using LangChain4j + Ollama β no API costs, no latency, no vendor lock.
π Why This Guide Matters
In 2025, AI-driven applications are no longer βnice-to-have.β
If your Spring Boot microservice can summarize logs, interpret metrics, or generate reports autonomously, youβre already ahead.
And thanks to LangChain4j, we can now integrate LLMs directly into Java, bringing the same magic as LangChain in Python β but with Spring Bootβs stability.
βοΈ Step 1: Setup Dependencies
In your pom.xml:
<dependencies>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-spring-boot-starter</artifactId>
<version>0.32.0</version>
</dependency>
<!-- For local model via Ollama -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-ollama</artifactId>
<version>0.32.0</version>
</dependency>
<!-- Springβ¦
