Tau-targeting therapies for Alzheimer disease: current status and future directions

  • Congdon, E. E. & Sigurdsson, E. M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 14, 399–415 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [No authors listed] 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 18, 700–789 (2022).


    Google Scholar
     

  • GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public. Health 7, e105–e125 (2022).


    Google Scholar
     

  • Panza, F., Lozupone, M., Logroscino, G. & Imbimbo, B. P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 15, 73–88 (2019).

    PubMed 

    Google Scholar
     

  • Jeremic, D., Jimenez-Diaz, L. & Navarro-Lopez, J. D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: a systematic review. Ageing Res. Rev. 72, 101496 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    PubMed 

    Google Scholar
     

  • Alzforum. U.S. FDA gives green light to Leqembi, aka lecanemab. Alzforum https://www.alzforum.org/news/research-news/us-fda-gives-green-light-leqembi-aka-lecanemab (2023).

  • Sims, J. R. et al. Donanemab in early symptomatic Alzheimer disease. JAMA 330, 512–527 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Lilly. Lilly’s donanemab significantly slowed cognitive and functional decline in phase 3 study of early Alzheimer’s disease. Lilly https://investor.lilly.com/news-releases/news-release-details/lillys-donanemab-significantly-slowed-cognitive-and-functional (2023).

  • Tissot, C. et al. Association between regional tau pathology and neuropsychiatric symptoms in aging and dementia due to Alzheimer’s disease. Alzheimers Dement. 7, e12154 (2021).


    Google Scholar
     

  • Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139, 1551–1567 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, X. et al. Association of tau pathology with clinical symptoms in the subfields of hippocampal formation. Front. Aging Neurosci. 13, 672077 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42, 631–639 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Arriagada, P. V., Marzloff, K. & Hyman, B. T. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42, 1681–1688 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Nelson, P. T. et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71, 362–381 (2012).

    PubMed 

    Google Scholar
     

  • Dronse, J. et al. In vivo patterns of tau pathology, amyloid-β burden, and neuronal dysfunction in clinical variants of Alzheimer’s disease. J. Alzheimers Dis. 55, 465–471 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, J. L. et al. Primary tau pathology, not copathology, correlates with clinical symptoms in PSP and CBD. J. Neuropathol. Exp. Neurol. 79, 296–304 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Chung, D. C., Roemer, S., Petrucelli, L. & Dickson, D. W. Cellular and pathological heterogeneity of primary tauopathies. Mol. Neurodegener. 16, 57 (2021).

    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Wu, K. M., Yang, L., Dong, Q. & Yu, J. T. Tauopathies: new perspectives and challenges. Mol. Neurodegener. 17, 28 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira, D. et al. The hippocampal sparing subtype of Alzheimer’s disease assessed in neuropathology and in vivo tau positron emission tomography: a systematic review. Acta Neuropathol. Commun. 10, 166 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira, D., Nordberg, A. & Westman, E. Biological subtypes of Alzheimer disease: a systematic review and meta-analysis. Neurology 94, 436–448 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arima, K. Ultrastructural characteristics of tau filaments in tauopathies: immuno-electron microscopic demonstration of tau filaments in tauopathies. Neuropathology 26, 475–483 (2006).

    PubMed 

    Google Scholar
     

  • Jin, N. et al. Truncation and activation of GSK-3β by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer’s disease. Sci. Rep. 5, 8187 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leroy, K., Yilmaz, Z. & Brion, J. P. Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol. 33, 43–55 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Pei, J. J. et al. Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer’s disease neurofibrillary degeneration. Brain Res. 797, 267–277 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Tseng, H. C., Zhou, Y., Shen, Y. & Tsai, L. H. A survey of Cdk5 activator p35 and p25 levels in Alzheimer’s disease brains. FEBS Lett. 523, 58–62 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Yarza, R., Vela, S., Solas, M. & Ramirez, M. J. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front. Pharmacol. 6, 321 (2015).

    PubMed 

    Google Scholar
     

  • Sontag, J. M. & Sontag, E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front. Mol. Neurosci. 7, 16 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taleski, G. & Sontag, E. Protein phosphatase 2A and tau: an orchestrated ‘pas de deux’. FEBS Lett. 592, 1079–1095 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Frautschy, S. A., Baird, A. & Cole, G. M. Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc. Natl Acad. Sci. USA 88, 8362–8366 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowall, N. W., McKee, A. C., Yankner, B. A. & Beal, M. F. In vivo neurotoxicity of beta-amyloid [β(1-40)] and the β(25-35) fragment. Neurobiol. Aging 13, 537–542 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Hernandez, P., Lee, G., Sjoberg, M. & Maccioni, R. B. Tau phosphorylation by cdk5 and Fyn in response to amyloid peptide Aβ25–35: involvement of lipid rafts. J. Alzheimers Dis. 16, 149–156 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Kirouac, L., Rajic, A. J., Cribbs, D. H. & Padmanabhan, J. Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. eNeuro 4, ENEURO.0149-16.2017 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Q. L. et al. β-Amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci. 29, 9078–9089 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nassif, M. et al. β-Amyloid peptide toxicity in organotypic hippocampal slice culture involves Akt/PKB, GSK-3β, and PTEN. Neurochem. Int. 50, 229–235 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Otth, C. et al. AβPP induces cdk5-dependent tau hyperphosphorylation in transgenic mice Tg2576. J. Alzheimers Dis. 4, 417–430 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Sigurdsson, E. M., Lee, J. M., Dong, X. W., Hejna, M. J. & Lorens, S. A. Bilateral injections of amyloid-β 25-35 into the amygdala of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects. Neurobiol. Aging 18, 591–608 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Sigurdsson, E. M., Lorens, S. A., Hejna, M. J., Dong, X. W. & Lee, J. M. Local and distant histopathological effects of unilateral amyloid-β 25-35 injections into the amygdala of young F344 rats. Neurobiol. Aging 17, 893–901 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Takashima, A. et al. Exposure of rat hippocampal neurons to amyloid β peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3β. Neurosci. Lett. 203, 33–36 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Terwel, D. et al. Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. Am. J. Pathol. 172, 786–798 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Town, T. et al. p35/Cdk5 pathway mediates soluble amyloid-β peptide-induced tau phosphorylation in vitro. J. Neurosci. Res. 69, 362–372 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Augustinack, J. C., Schneider, A., Mandelkow, E. M. & Hyman, B. T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. 103, 26–35 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Luna-Munoz, J., Chavez-Macias, L., Garcia-Sierra, F. & Mena, R. Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. J. Alzheimers Dis. 12, 365–375 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Wesseling, H. et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183, 1699–1713.e13 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moloney, C. M. et al. Phosphorylated tau sites that are elevated in Alzheimer’s disease fluid biomarkers are visualized in early neurofibrillary tangle maturity levels in the post mortem brain. Alzheimers Dement. https://doi.org/10.1002/alz.12749 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Braak, H., Thal, D. R., Ghebremedhin, E. & Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Neddens, J. et al. Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol. Commun. 6, 52 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, S. & Shiota, K. Sequential changes of programmed cell death in developing fetal mouse limbs and its possible roles in limb morphogenesis. J. Morphol. 229, 337–346 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Mair, W. et al. FLEXITau: quantifying post-translational modifications of tau protein in vitro and in human disease. Anal. Chem. 88, 3704–3714 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regalado-Reyes, M. et al. Phospho-tau changes in the human CA1 during Alzheimer’s disease progression. J. Alzheimers Dis. 69, 277–288 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samimi, N. et al. Distinct phosphorylation profiles of tau in brains of patients with different tauopathies. Neurobiol. Aging 108, 72–79 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Falcon, B. et al. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561, 137–140 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noble, W., Hanger, D. P., Miller, C. C. & Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol. 4, 83 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, Y., Prokop, S. & Giasson, B. I. “Don’t phos over tau”: recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies. Mol. Neurodegener. 16, 37 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caballero, B. et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat. Commun. 12, 2238 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alquezar, C. et al. TSC1 loss increases risk for tauopathy by inducing tau acetylation and preventing tau clearance via chaperone-mediated autophagy. Sci. Adv. 7, eabg3897 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alquezar, C., Arya, S. & Kao, A. W. Tau post-translational modifications: dynamic transformers of tau function, degradation, and aggregation. Front. Neurol. 11, 595532 (2020).

    PubMed 

    Google Scholar
     

  • Min, S. W. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, M. K. et al. Reducing acetylated tau is neuroprotective in brain injury. Cell 184, 2715–2732 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlad, S. C., Miller, D. R., Kowall, N. W. & Felson, D. T. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70, 1672–1677 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • de Craen, A. J., Gussekloo, J., Vrijsen, B. & Westendorp, R. G. Meta-analysis of nonsteroidal antiinflammatory drug use and risk of dementia. Am. J. Epidemiol. 161, 114–120 (2005).

    PubMed 

    Google Scholar
     

  • Camu, F., Van de Velde, A. & Vanlersberghe, C. Nonsteroidal anti-inflammatory drugs and paracetamol in children. Acta Anaesthesiol. Belg. 52, 13–20 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Quinn, J. P., Corbett, N. J., Kellett, K. A. B. & Hooper, N. M. Tau proteolysis in the pathogenesis of tauopathies: neurotoxic fragments and novel biomarkers. J. Alzheimers Dis. 63, 13–33 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plouffe, V. et al. Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS ONE 7, e36873 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noble, W. et al. Minocycline reduces the development of abnormal tau species in models of Alzheimer’s disease. FASEB J. 23, 739–750 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Tan, M. S., Liu, Y., Hu, H., Tan, C. C. & Tan, L. Inhibition of caspase-1 ameliorates tauopathy and rescues cognitive impairment in SAMP8 mice. Metab. Brain Dis. 37, 1197–1205 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Flores, J., Noel, A., Foveau, B., Beauchet, O. & LeBlanc, A. C. Pre-symptomatic caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. Nat. Commun. 11, 4571 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flores, J. et al. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat. Commun. 9, 3916 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantrelle, F. X. et al. Phosphorylation and O-GlcNAcylation of the PHF-1 epitope of tau protein induce local conformational changes of the C-terminus and modulate tau self-assembly into fibrillar aggregates. Front. Mol. Neurosci. 14, 661368 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arakhamia, T. et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180, 633–644.e12 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oakley, S. S. et al. Tau filament self-assembly and structure: tau as a therapeutic target. Front. Neurol. 11, 590754 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrer, I., Andres-Benito, P., Carmona, M. & Del Rio, J. A. Common and specific marks of different tau strains following intra-hippocampal injection of AD, PiD, and GGT inoculum in hTau transgenic mice. Int. J. Mol. Sci. 23, 15940 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weitzman, S. A. et al. Insoluble tau from human FTDP-17 cases exhibit unique transmission properties in vivo. J. Neuropathol. Exp. Neurol. 79, 941–949 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaufman, S. K. et al. Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92, 796–812 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niewiadomska, G., Niewiadomski, W., Steczkowska, M. & Gasiorowska, A. Tau oligomers neurotoxicity. Life 11, 28 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerson, J. E., Mudher, A. & Kayed, R. Potential mechanisms and implications for the formation of tau oligomeric strains. Crit. Rev. Biochem. Mol. Biol. 51, 482–496 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shafiei, S. S., Guerrero-Munoz, M. J. & Castillo-Carranza, D. L. Tau oligomers: cytotoxicity, propagation, and mitochondrial damage. Front. Aging Neurosci. 9, 83 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardenas-Aguayo Mdel, C., Gomez-Virgilio, L., DeRosa, S. & Meraz-Rios, M. A. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem. Neurosci. 5, 1178–1191 (2014).

    PubMed 

    Google Scholar
     

  • Guerrero-Munoz, M. J., Gerson, J. & Castillo-Carranza, D. L. Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Front. Cell. Neurosci. 9, 464 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Y. & Bai, F. The association of tau with mitochondrial dysfunction in Alzheimer’s disease. Front. Neurosci. 12, 163 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montalbano, M. et al. Tau oligomers mediate aggregation of RNA-binding proteins Musashi1 and Musashi2 inducing Lamin alteration. Aging Cell 18, e13035 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otero-Garcia, M. et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron 110, 2929–2948.e8 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazquez, A. Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases. PLoS ONE 8, e63822 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandelkow, E. M., Stamer, K., Vogel, R., Thies, E. & Mandelkow, E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol. Aging 24, 1079–1085 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Brion, J. P. & Flament-Durand, J. Distribution and expression of the α-tubulin mRNA in the hippocampus and the temporal cortex in Alzheimer’s disease. Pathol. Res. Pract. 191, 490–498 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Cisek, K., Cooper, G. L., Huseby, C. J. & Kuret, J. Structure and mechanism of action of tau aggregation inhibitors. Curr. Alzheimer Res. 11, 918–927 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dominguez-Meijide, A., Vasili, E. & Outeiro, T. F. Pharmacological modulators of tau aggregation and spreading. Brain Sci. 10, 858 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aillaud, I. & Funke, S. A. Tau aggregation inhibiting peptides as potential therapeutics for Alzheimer disease. Cell. Mol. Neurobiol. 43, 951–961 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Martinez-Hernandez, J. et al. Crosstalk between acetylation and the tyrosination/detyrosination cycle of α-tubulin in Alzheimer’s disease. Front. Cell Dev. Biol. 10, 926914 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. Posttranslational modifications of α-tubulin in alzheimer disease. Transl. Neurodegener. 4, 9 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajaei, S. et al. Conformational change and GTPase activity of human tubulin: a comparative study on Alzheimer’s disease and healthy brain. J. Neurochem. 155, 207–224 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Peris, L. et al. Tubulin tyrosination regulates synaptic function and is disrupted in Alzheimer’s disease. Brain 145, 2486–2506 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vu, H. T., Akatsu, H., Hashizume, Y., Setou, M. & Ikegami, K. Increase in α-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer’s disease. Sci. Rep. 7, 40205 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caponio, D. et al. Compromised autophagy and mitophagy in brain ageing and Alzheimer’s diseases. Aging Brain 2, 100056 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filippone, A., Esposito, E., Mannino, D., Lyssenko, N. & Pratico, D. The contribution of altered neuronal autophagy to neurodegeneration. Pharmacol. Ther. 238, 108178 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nixon, R. A. The aging lysosome: an essential catalyst for late-onset neurodegenerative diseases. Biochim. Biophys. Acta Proteins Proteom. 1868, 140443 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourdenx, M. et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 184, 2696–2714.e25 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urbanelli, L. et al. Cathepsin D expression is decreased in Alzheimer’s disease fibroblasts. Neurobiol. Aging 29, 12–22 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Mori, H., Kondo, J. & Ihara, Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235, 1641–1644 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Keller, J. N., Hanni, K. B. & Markesbery, W. R. Impaired proteasome function in Alzheimer’s disease. J. Neurochem. 75, 436–439 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Perry, G., Friedman, R., Shaw, G. & Chau, V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc. Natl Acad. Sci. USA 84, 3033–3036 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez, M. et al. Tau – an inhibitor of deacetylase HDAC6 function. J. Neurochem. 109, 1756–1766 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. Z. et al. Intracellular accumulation of tau inhibits autophagosome formation by activating TIA1-amino acid-mTORC1 signaling. Mil. Med. Res. 9, 38 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Q. et al. MAPT/tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III complex formation: a vicious cycle in Alzheimer neurodegeneration. Autophagy 16, 641–658 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Funk, K. E., Mrak, R. E. & Kuret, J. Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles. Neuropathol. Appl. Neurobiol. 37, 295–306 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Midani-Kurcak, J. S., Dinekov, M., Puladi, B., Arzberger, T. & Kohler, C. Effect of tau-pathology on charged multivesicular body protein 2b (CHMP2B). Brain Res. 1706, 224–236 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Yamazaki, Y. et al. Immunopositivity for ESCRT-III subunit CHMP2B in granulovacuolar degeneration of neurons in the Alzheimer’s disease hippocampus. Neurosci. Lett. 477, 86–90 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Jones, E. M. et al. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption. Biochemistry 51, 2539–2550 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Calafate, S., Flavin, W., Verstreken, P. & Moechars, D. Loss of Bin1 promotes the propagation of tau pathology. Cell Rep. 17, 931–940 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Caballero, B. et al. Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell 17, e12692 (2018).

    PubMed 

    Google Scholar
     

  • Polanco, J. C., Hand, G. R., Briner, A., Li, C. & Gotz, J. Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol. 141, 235–256 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flavin, W. P. et al. Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins. Acta Neuropathol. 134, 629–653 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. J. et al. Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J. Biol. Chem. 294, 18952–18966 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scoles, D. R., Minikel, E. V. & Pulst, S. M. Antisense oligonucleotides: a primer. Neurol. Genet. 5, e323 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alzforum. Antisense therapy stifles CSF tau in mild Alzheimer’s disease. Alzforum https://www.alzforum.org/news/conference-coverage/antisense-therapy-stifles-csf-tau-mild-alzheimers-disease-0 (2021).

  • Alzforum. First hit on aggregated tau: antisense oligonucleotide lowers tangles. Alzforum https://www.alzforum.org/news/conference-coverage/first-hit-aggregated-tau-antisense-oligonucleotide-lowers-tangles (2023).

  • Mummery, C. J. et al. Tau-targeting antisense oligonucleotide MAPT(Rx) in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nat. Med. 29, 1437–1447 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chohan, M. O., Khatoon, S., Iqbal, I. G. & Iqbal, K. Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by memantine. FEBS Lett. 580, 3973–3979 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Corcoran, N. M. et al. Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J. Clin. Neurosci. 17, 1025–1033 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Rueli, R. H. L. H. et al. Selenprotein S reduces endoplasmic reticulum stress-induced phosphorylation of tau: potential selenate mitigation of tau pathology. J. Alzheimers Dis. 55, 749–762 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Eersel, J. et al. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc. Natl Acad. Sci. USA 107, 13888–13893 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malpas, C. B. et al. A phase IIa randomized control trial of VEL015 (sodium selenate) in mild-moderate Alzheimer’s disease. J. Alzheimers Dis. 54, 223–232 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Vivash, L. et al. A phase 1b open-label study of sodium selenate as a disease-modifying treatment for possible behavioral variant frontotemporal dementia. Alzheimers Dement. 8, e12299 (2022).


    Google Scholar
     

  • Vivash, L. et al. A study protocol for a phase II randomised, double-blind, placebo-controlled trial of sodium selenate as a disease-modifying treatment for behavioural variant frontotemporal dementia. BMJ Open. 10, e040100 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vivash, L. et al. Sodium selenate as a disease-modifying treatment for progressive supranuclear palsy: protocol for a phase 2, randomised, double-blind, placebo-controlled trial. BMJ Open. 11, e055019 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz-B, S., Tornero-Écija, A. R., Vincent, O. & Escalante, R. VPS13A is closely associated with mitochondria and is required for efficient lysosomal degradation. Dis. Model. Mech. 12, dmm036681 (2019).


    Google Scholar
     

  • Fu, Z.-Q. et al. LiCl attenuates thapsigargin-induced tau hyperphosphorylation by inhibiting GSK-3β in vivo and in vitro. J. Alzheimers Dis. 21, 1107–1117 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Duthie, A. et al. Recruitment, retainment, and biomarkers of response; a pilot trial of lithium in humans with mild cognitive impairment. Front. Mol. Neurosci. 12, 163 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • VandeVrede, L. et al. Open‐label phase 1 futility studies of salsalate and young plasma in progressive supranuclear palsy. Mov. Disord. Clin. Pract. 7, 440–447 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, L. A., Moya, K. L. & Breen, K. C. The potential role of tau protein O-glycosylation in Alzheimer’s disease. J. Alzheimers Dis. 6, 489–495 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W. & Gong, C.-X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 101, 10804–10809 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alzforum. Therapeutics: ASN90. Alzforum https://www.alzforum.org/therapeutics/asn90 (2022).

  • Ryan, J. M. et al. Phase 1 study in healthy volunteers of the O-GlcNAcase inhibitor ASN120290 as a novel therapy for progressive supranuclear palsy and related tauopathies [abstract O1-12-05]. Alzheimers Dement. 14 (7S Part 4), 251 (2018).


    Google Scholar
     

  • Shcherbinin, S. et al. Brain target occupancy of LY3372689, an inhibitor of the O‐GlcNAcase (OGA) enzyme: translation from rat to human: neuroimaging/evaluating treatments. Alzheimers Dement. 16, e040558 (2020).


    Google Scholar
     

  • Alzforum. Therapeutics: LY3372689. Alzforum https://www.alzforum.org/therapeutics/ly3372689 (2022).

  • Kielbasa, W. et al. Brain target occupancy of LY3372689, an inhibitor of the O‐GlcNAcase (OGA) enzyme, following administration of single and multiple doses to healthy volunteers. Alzheimers Dement. 17, e057774 (2021).


    Google Scholar
     

  • Kielbasa, W. et al. A single ascending dose study in healthy volunteers to assess the safety and PK of LY3372689, an inhibitor of O‐GlcNAcase (OGA) enzyme. Human/human trials: anti‐tau. Alzheimers Dement. 16, e040473 (2020).


    Google Scholar
     

  • Lowe, S. L. et al. Single and multiple ascending dose studies in healthy volunteers to assess the safety and PK of LY3372689, an inhibitor of the O‐GlcNAcase (OGA) enzyme. Alzheimers Dement. 17, e057728 (2021).


    Google Scholar
     

  • Howard, R. et al. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease: a randomized clinical trial. JAMA Neurol. 77, 164–174 (2020).

    PubMed 

    Google Scholar
     

  • Ma, Q.-L. et al. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J. Biol. Chem. 288, 4056–4065 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Rane, J. S., Bhaumik, P. & Panda, D. Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J. Alzheimers Dis. 60, 999–1014 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Goel, A., Kunnumakkara, A. B. & Aggarwal, B. B. Curcumin as “Curecumin”: from kitchen to clinic. Biochem. Pharmacol. 75, 787–809 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Small, G. W. et al. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry 26, 266–277 (2018).

    PubMed 

    Google Scholar
     

  • Hosokawa, M. et al. Methylene blue reduced abnormal tau accumulation in P301L tau transgenic mice. PLoS ONE 7, e52389 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hochgräfe, K. et al. Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau. Acta Neuropathol. Commun. 3, 25 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gauthier, S. et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388, 2873–2884 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilcock, G. K. et al. Potential of low dose leuco-methylthioninium bis(hydromethanesulphonate) (LMTM) monotherapy for treatment of mild Alzheimer’s disease: cohort analysis as modified primary outcome in a phase III clinical trial. J. Alzheimers Dis. 61, 435–457 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Alzforum. Tau inhibitor fails again – subgroup analysis irks clinicians at CTAD. Alzforum https://www.alzforum.org/news/conference-coverage/tau-inhibitor-fails-again-subgroup-analysis-irks-clinicians-ctad (2016).

  • Alzforum. In first phase 3 trial, the Tau drug LMTM did not work. Period. Alzforum http://www.alzforum.org/news/conference-coverage/first-phase-3-trial-tau-drug-lmtm-did-not-work-period#show-more (2016).

  • Alzforum. First round of FTD therapeutics fell short, but many more are up and running. Alzforum https://www.alzforum.org/news/conference-coverage/first-round-ftd-therapeutics-fell-short-many-more-are-and-running (2016).

  • Alzforum. Therapeutics: ACI-3024. Alzforum https://www.alzforum.org/therapeutics/aci-3024 (2021).

  • Fitzgerald, D. P. et al. TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol. Cancer Ther. 11, 1959–1967 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, R. M. et al. Reactions to multiple ascending doses of the microtubule stabilizer TPI-287 in patients with Alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome: a randomized clinical trial. JAMA Neurol. 77, 215–224 (2020).

    PubMed 

    Google Scholar
     

  • Magen, I. & Gozes, I. Microtubule-stabilizing peptides and small molecules protecting axonal transport and brain function: focus on davunetide (NAP). Neuropeptides 47, 489–495 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Asuni, A. A., Quartermain, D. & Sigurdsson, E. M. Tau-based immunotherapy for dementia. Alzheimers Dement. 2, S40–S41 (2006).


    Google Scholar
     

  • Asuni, A. A., Boutajangout, A., Quartermain, D. & Sigurdsson, E. M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci. 27, 9115–9129 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutajangout, A., Ingadottir, J., Davies, P. & Sigurdsson, E. M. Passive tau immuntherapy diminishes functional decline and clears tau aggregates in a mouse model of tauopathy [abstract P3-427]. Alzheimers Dement. 6 (4S Part 19), S578 (2010).


    Google Scholar
     

  • Boutajangout, A., Ingadottir, J., Davies, P. & Sigurdsson, E. M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem. 118, 658–667 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bittar, A., Bhatt, N. & Kayed, R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol. Dis. 134, 104707 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Colin, M. et al. From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol. 139, 3–25 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Congdon, E. E., Jiang, Y. & Sigurdsson, E. M. Targeting tau only extracellularly is likely to be less efficacious than targeting it both intra- and extracellularly. Semin. Cell Dev. Biol. 126, 125–137 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Ji, C. & Sigurdsson, E. M. Current status of clinical trials on tau immunotherapies. Drugs 81, 1135–1152 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandusky-Beltran, L. A. & Sigurdsson, E. M. Tau immunotherapies: lessons learned, current status and future considerations. Neuropharmacology 175, 108104 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, P. Y., Chang, I. S., Koh, R. Y. & Chye, S. M. Recent advances in tau-directed immunotherapy against Alzheimer’s disease: an overview of pre-clinical and clinical development. Metab. Brain Dis. 35, 1049–1066 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Karimi, N., Bayram, C. F., Arslan, E., Saghazadeh, A. & Rezaei, N. Tau immunotherapy in Alzheimer’s disease and progressive supranuclear palsy. Int. Immunopharmacol. 113, 109445 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y., Li, S., Zeng, L.-H. & Tan, J. Tau-targeting therapy in Alzheimer’s disease: critical advances and future opportunities. Ageing Neurodegener. Dis. 2, 11 (2022).

    CAS 

    Google Scholar
     

  • Rosenmann, H. et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch. Neurol. 63, 1459–1467 (2006).

    PubMed 

    Google Scholar
     

  • Rozenstein-Tsalkovich, L. et al. Repeated immunization of mice with phosphorylated-tau peptides causes neuroinflammation. Exp. Neurol. 248, 451–456 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Rajamohamedsait, H., Rasool, S., Rajamohamedsait, W., Lin, Y. & Sigurdsson, E. M. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xTg mice. Sci. Rep. 7, 17034 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholls, S. B. et al. Characterization of TauC3 antibody and demonstration of its potential to block tau propagation. PLoS ONE 12, e0177914 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nobuhara, C. K. et al. Tau antibody targeting pathological species blocks neuronal uptake and interneuron propagation of tau in vitro. Am. J. Pathol. 187, 1399–1412 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, M. et al. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol. Commun. 8, 13 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenqvist, N. et al. Highly specific and selective anti-pS396-tau antibody C10.2 targets seeding-competent tau. Alzheimers Dement. 4, 521–534 (2018).


    Google Scholar
     

  • Yanamandra, K. et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80, 402–414 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funk, K. E., Mirbaha, H., Jiang, H., Holtzman, D. M. & Diamond, M. I. Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake. J. Biol. Chem. 290, 21652–21662 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Congdon, E. E. et al. Tau antibody chimerization alters its charge and binding, thereby reduces its cellular uptake and efficacy. eBioMedicine 42, 157–173 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Congdon, E. E. et al. Affinity of tau antibodies for solubilized pathological tau species but not their immunogen or insoluble tau aggregates predicts in vivo and ex vivo efficacy. Mol. Neurodegener. 11, 62–86 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shamir, D. B. et al. Dynamics of internalization and intracellular interaction of tau antibodies and human pathological tau protein in a human neuron-like model. Front. Neurol. 11, 602292 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kfoury, N., Holmes, B. B., Jiang, H., Holtzman, D. M. & Diamond, M. I. Trans-cellular propagation of Tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440–19451 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bright, J. et al. Human secreted tau increases amyloid-beta production. Neurobiol. Aging 36, 693–709 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Castillo-Carranza, D. L. et al. Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J. Neurosci. 34, 4260–4272 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • d’Abramo, C. et al. Detecting tau in serum of transgenic animal models after tau immunotherapy treatment. Neurobiol. Aging 37, 58–65 (2016).

    PubMed 

    Google Scholar
     

  • Yanamandra, K. et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann. Clin. Transl. Neurol. 2, 278–288 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, W. et al. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci. Rep. 5, 11161 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersson, C. R. et al. Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcγ-receptor binding and functional lysosomes. Sci. Rep. 9, 4658 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zilkova, M. et al. Humanized tau antibodies promote tau uptake by human microglia without any increase of inflammation. Acta Neuropathol. Commun. 8, 74 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. H. et al. Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement. Cell Rep. 16, 1690–1700 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Mukadam, A. S. et al. Cytosolic antibody receptor TRIM21 is required for effective tau immunotherapy in mouse models. Science 379, 1336–1341 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, B. et al. Tau immunotherapy is associated with glial responses in FTLD-tau. Acta Neuropathol. 142, 243–257 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leyns, C. E. G. & Holtzman, D. M. Glial contributions to neurodegeneration in tauopathies. Mol. Neurodegener. 12, 50 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leng, F. & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17, 157–172 (2021).

    PubMed 

    Google Scholar
     

  • Uddin, M. S. & Lim, L. W. Glial cells in Alzheimer’s disease: from neuropathological changes to therapeutic implications. Ageing Res. Rev. 78, 101622 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Serrano-Pozo, A. et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am. J. Pathol. 179, 1373–1384 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dani, M. et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain 141, 2740–2754 (2018).

    PubMed 

    Google Scholar
     

  • Ismail, R. et al. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: a longitudinal PET study. J. Neuroinflammation 17, 151 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda, J. et al. In vivo positron emission tomographic imaging of glial responses to amyloid-β and tau pathologies in mouse models of Alzheimer’s disease and related disorders. J. Neurosci. 31, 4720–4730 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Appleton, J. et al. Neuroinflammation co-localizes highly with tau in amnestic mild cognitive impairment. Alzheimers Dement. 18, e068025 (2022).


    Google Scholar
     

  • Hamelin, L. et al. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain 139, 1252–1264 (2016).

    PubMed 

    Google Scholar
     

  • Hamelin, L. et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain 141, 1855–1870 (2018).

    PubMed 

    Google Scholar
     

  • Fan, Z., Brooks, D. J., Okello, A. & Edison, P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain 140, 792–803 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Femminella, G. D. et al. Microglial activation in early Alzheimer trajectory is associated with higher gray matter volume. Neurology 92, e1331–e1343 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Congdon, E. E., Gu, J., Sait, H. B. & Sigurdsson, E. M. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance. J. Biol. Chem. 288, 35452–35465 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, J., Congdon, E. E. & Sigurdsson, E. M. Two novel tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce tau protein pathology. J. Biol. Chem. 288, 33081–33095 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Q., Lin, Y., Gu, J. & Sigurdsson, E. M. Dynamic assessment of tau immunotherapies in the brains of live animals by two-photon imaging. eBioMedicine 35, 270–278 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collin, L. et al. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain 137, 2834–2846 (2014).

    PubMed 

    Google Scholar
     

  • McEwan, W. A. et al. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proc. Natl Acad. Sci. USA 114, 574–579 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnamurthy, P. K., Deng, Y. & Sigurdsson, E. M. Mechanistic studies of antibody-mediated clearance of tau aggregates using an ex vivo brain slice model. Front. Psychiatry 2, 59 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo, A. et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523, 431–436 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnaswamy, S. et al. Antibody-derived in vivo imaging of tau pathology. J. Neurosci. 34, 16835–16850 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shamir, D. B., Rosenqvist, N., Rasool, S., Pedersen, J. T. & Sigurdsson, E. M. Internalization of tau antibody and pathological tau protein detected with a flow cytometry multiplexing approach. Alzheimers Dement. 12, 1098–1107 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuller, J. P., Stavenhagen, J. B. & Teeling, J. L. New roles for Fc receptors in neurodegeneration – the impact on immunotherapy for Alzheimer’s disease. Front. Neurosci. 8, 235 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Kleij, H. et al. Evidence for neuronal expression of functional Fc (ε and γ) receptors. J. Allergy Clin. Immunol. 125, 757–760 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura, K. et al. CD3 and immunoglobulin G Fc receptor regulate cerebellar functions. Mol. Cell. Biol. 27, 5128–5134 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stamou, M., Grodzki, A. C., van Oostrum, M., Wollscheid, B. & Lein, P. J. Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J. Neuroinflammation 15, 7 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suemitsu, S. et al. Fcγ receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection. Neuroscience 166, 819–831 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Andoh, T. & Kuraishi, Y. Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I. FASEB J. 18, 182–184 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Andoh, T. & Kuraishi, Y. Expression of Fc epsilon receptor I on primary sensory neurons in mice. Neuroreport 15, 2029–2031 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Qu, L., Zhang, P., LaMotte, R. H. & Ma, C. Neuronal Fc-gamma receptor I mediated excitatory effects of IgG immune complex on rat dorsal root ganglion neurons. Brain. Behav. Immun. 25, 1399–1407 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, H. et al. Nociceptive neuronal Fc-gamma receptor I is involved in IgG immune complex induced pain in the rat. Brain. Behav. Immun. 62, 351–361 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Neuronal FcγRI mediates acute and chronic joint pain. J. Clin. Invest. 129, 3754–3769 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandupatla, R. R., Flatley, A., Feederle, R., Mandelkow, E. M. & Kaniyappan, S. Novel antibody against low-n oligomers of tau protein promotes clearance of tau in cells via lysosomes. Alzheimers Dement. 6, e12097 (2020).


    Google Scholar
     

  • Masliah, E. et al. Effects of α-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46, 857–868 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Masliah, E. et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS ONE 6, e19338 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pozzi, S. et al. Monoclonal full-length antibody against TAR DNA binding protein 43 reduces related proteinopathy in neurons. JCI Insight 5, e140420 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karpiak, S. E. & Mahadik, S. P. Selective uptake by Purkinje neurons of antibodies to S-100 protein. Exp. Neurol. 98, 453–457 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Fabian, R. H. & Ritchie, T. C. Intraneuronal IgG in the central nervous system. J. Neurol. Sci. 73, 257–267 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Greenlee, J. E., Burns, J. B., Rose, J. W., Jaeckle, K. A. & Clawson, S. Uptake of systemically administered human anticerebellar antibody by rat Purkinje cells following blood-brain barrier disruption. Acta Neuropathol. 89, 341–345 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Graus, F. et al. Effect of intraventricular injection of an anti-Purkinje cell antibody (anti-Yo) in a guinea pig model. J. Neurol. Sci. 106, 82–87 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Hill, K. E., Clawson, S. A., Rose, J. W., Carlson, N. G. & Greenlee, J. E. Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics. J. Neuroinflammation 6, 31 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenlee, J. E. et al. Neuronal uptake of anti-Hu antibody, but not anti-Ri antibody, leads to cell death in brain slice cultures. J. Neuroinflammation 11, 160 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenlee, J. E. et al. Purkinje cell death after uptake of anti-Yo antibodies in cerebellar slice cultures. J. Neuropathol. Exp. Neurol. 69, 997–1007 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Rocchi, A. et al. Autoantibodies to synapsin I sequestrate synapsin I and alter synaptic function. Cell Death Dis. 10, 864 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldwaser, E. L. et al. Evidence that brain-reactive autoantibodies contribute to chronic neuronal internalization of exogenous amyloid-β1-42 and key cell surface proteins during Alzheimer’s disease pathogenesis. J. Alzheimers Dis. 74, 345–361 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gustafsson, G. et al. Cellular uptake of α-synuclein oligomer-selective antibodies is enhanced by the extracellular presence of α-synuclein and mediated via Fcγ receptors. Cell. Mol. Neurobiol. 37, 121–131 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, L. et al. Antibody therapy targeting RAN proteins rescues C9 ALS/FTD phenotypes in C9orf72 mouse model. Neuron 105, 645–662.e11 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Benkler, C. et al. Aggregated SOD1 causes selective death of cultured human motor neurons. Sci. Rep. 8, 16393 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaretsky, D. V., Zaretskaia, M. V. & Molkov, Y. I. Membrane channel hypothesis of lysosomal permeabilization by beta-amyloid. Neurosci. Lett. 770, 136338 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Umeda, T. et al. Intraneuronal amyloid β oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J. Neurosci. Res. 89, 1031–1042 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, A. J., Chandswangbhuvana, D., Margol, L. & Glabe, C. G. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Aβ1-42 pathogenesis. J. Neurosci. Res. 52, 691–698 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. H. et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat. Neurosci. 25, 688–701 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, D., Song, H. J., Garza, D., Neufeld, T. P. & Salvaterra, P. M. Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS ONE 4, e4201 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dingjan, I. et al. Lipid peroxidation causes endosomal antigen release for cross-presentation. Sci. Rep. 6, 22064 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zehner, M. et al. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8+ T cells. Immunity 42, 850–863 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Embgenbroich, M. & Burgdorf, S. Current concepts of antigen cross-presentation. Front. Immunol. 9, 1643 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gros, M. & Amigorena, S. Regulation of antigen export to the cytosol during cross-presentation. Front. Immunol. 10, 41 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abskharon, R. et al. Crystal structure of a conformational antibody that binds tau oligomers and inhibits pathological seeding by extracts from donors with Alzheimer’s disease. J. Biol. Chem. 295, 10662–10676 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. et al. A single-chain variable fragment antibody inhibits aggregation of phosphorylated tau and ameliorates tau toxicity in vitro and in vivo. J. Alzheimers Dis. 79, 1613–1629 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Krishnaswamy, S., Huang, H. W., Marchal, I. S., Ryoo, H. D. & Sigurdsson, E. M. Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiol. Dis. 137, 104770 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kontsekova, E., Zilka, N., Kovacech, B., Novak, P. & Novak, M. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res. Ther. 6, 44 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novak, P. et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 16, 123–134 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Grossman, M. The non-fluent/agrammatic variant of primary progressive aphasia. Lancet Neurol. 11, 545–555 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novak, P. et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res. Ther. 10, 108 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Axon Neuroscience. Axon announces positive results from phase II ADAMANT trial for Aadvac1 in Alzheimer’s disease. Axon Neuroscience https://www.axon-neuroscience.eu/docs/press_release_Axon_announces_positive_result_9-9-2019.pdf (2019).

  • Novak, P. et al. ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease. Nat. Aging 1, 521–534 (2021).

    PubMed 

    Google Scholar
     

  • Alzforum. Active tau vaccine: hints of slowing neurodegeneration. Alzforum https://www.alzforum.org/news/conference-coverage/active-tau-vaccine-hints-slowing-neurodegeneration (2020).

  • Hickman, D. T. et al. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J. Biol. Chem. 286, 13966–13976 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • AC Immune. AC Immune announces interim phase 1b/2a data showing that its ACI-35.030 anti-Ptau Alzheimer’s vaccine generates a potent immune response. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immune-announces-interim-phase-1b2a-data-showing-its-aci (2021).

  • AC Immune. AC Immune ACI-35.030 phase 1b/2a trial interim data confirm consistent safety and potent immunogenicity of pTau Alzheimer’s vaccine in high-dose cohort. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immune-aci-35030-phase-1b2a-trial-interim-data-confirm (2022).

  • AC Immune. AC Immune advances phospho-Tau Alzheimer’s vaccine in phase 1b/2a study. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immune-advances-phospho-tau-alzheimers-vaccine-phase-1b2a (2020).

  • AC Immune. AC Immune announces expansion of phase 1b/2a phospho-Tau Alzheimer’s vaccine trial and provides a program update. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immune-announces-expansion-phase-1b2a-phospho-tau-alzheimers (2021).

  • AC Immune. AC Immune’s Alzheimer’s vaccine generates potent anti-Ptau antibody response in a phase 1b/2a study. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immunes-alzheimers-vaccine-generates-potent-anti-ptau (2021).

  • AC Immune. AC Immune’s Alzheimer’s disease vaccine-candidate ACI-35.030 selected for further development. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immunes-alzheimers-disease-vaccine-candidate-aci-35030 (2022).

  • Tai, H. C. et al. The tau oligomer antibody APNmAb005 detects early-stage pathological tau enriched at synapses and rescues neuronal loss in long-term treatments. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2022.06.24.497452v1 (2022).

  • Courade, J. P. et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 136, 729–745 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albert, M. et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain 142, 1736–1750 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchanan, T. et al. A randomised, placebo-controlled, first-in-human study with a central Tau epitope antibody – UCB0107 [abstract LBA3]. International Congress of the Parkinson’s Disease and Movement Disorders: 2019 Late-Breaking Abstracts (International Parkinson and Movement Disorder Society, 2019).

  • UCB. UCB presents UCB0107 anti-Tau immunotherapy Phase I study Results at World Movement Disorders Conference®. UCB https://www.ucb.com/stories-media/Press-Releases/article/UCB-presents-UCB0107-anti-Tau-immunotherapy-Phase-I-study-results-at-World-Movement-Disorders-Conference (2019).

  • Alzforum. N-terminal tau antibodies fade, mid-domain ones push to the fore. Alzforum https://www.alzforum.org/news/conference-coverage/n-terminal-tau-antibodies-fade-mid-domain-ones-push-fore (2021).

  • Alzforum. More tau antibodies bid adieu; semorinemab keeps foot in door. Alzforum https://www.alzforum.org/news/conference-coverage/more-tau-antibodies-bid-adieu-semorinemab-keeps-foot-door (2021).

  • Alzforum. Therapeutics: BIIB076. Alzforum https://www.alzforum.org/therapeutics/biib076 (2022).

  • Motley Fool Transcribing. Biogen (BIIB) Q2 2022 earnings call transcript. The Motley Fool https://www.fool.com/earnings/call-transcripts/2022/07/20/biogen-biib-q2-2022-earnings-call-transcript/ (2022).

  • Eisai. Eisai presents data showing quantification of tau microtubule binding region in cerebrospinal fluid and the identification of a target engagement biomarker for the new anti-tau antibody E2814 at Alzheimer’s Association International Conference (AAIC) 2019. Eisai https://www.eisai.com/news/2019/news201955.html (2019).

  • Talma, S. et al. Efficacy of the murine version of E2814 in a validated AD brain seed-injection model in hTau mice [abstract P4-673]. Presented at the Alzheimer’s Association International Conference, Amsterdam, Netherlands, and Online (2023).

  • Horie, K., Barthelemy, N. R., Sato, C. & Bateman, R. J. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain 144, 515–527 (2021).

    PubMed 

    Google Scholar
     

  • Horie, K. et al. Quantification of the tau microtubule binding region (MTBR) in cerebrospinal fluid and subsequent validation of target engagement assay for E2814, a novel anti-tau therapeutic antibody. Alzheimers Dement. 15(7S Part 31), 1598–1599 (2019).


    Google Scholar
     

  • Alzforum. Aiming at the tangle’s heart? DIAN-TU trial to torpedo tau’s core. Alzforum https://www.alzforum.org/news/research-news/aiming-tangles-heart-dian-tu-trial-torpedo-taus-core (2021).

  • Zhou, J. et al. E2814: an anti-tau therapy engages its CNS target and affects the downstream tangle-specific biomarker MTBR-tau243 in dominantly inherited Alzheimer’s disease [abstract]. Presented at the Alzheimer’s Association International Conference, Amsterdam, Netherlands, and Online 2023 (2023).

  • Rawal, S. et al. Safety, pharmacokinetics and immunogenicity of single and multiple ascending doses of the anti-tau therapeutic antibody E2814: a phase 1, first-in-human (FIH) study in healthy subjects [abstract P1-909]. Presented at the Alzheimer’s Association International Conference, Amsterdam, Netherlands, and Online (2023).

  • Horie, K. et al. CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer’s disease. Nat. Med. 29, 1954–1963 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sopko, R. et al. Characterization of tau binding by gosuranemab. Neurobiol. Dis. 146, 105120 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Alzforum. Therapeutics: Gosuranemab. Alzforum https://www.alzforum.org/therapeutics/gosuranemab (2022).

  • Qureshi, I. A. et al. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement. 4, 746–755 (2018).


    Google Scholar
     

  • Boxer, A. L. et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 18, 549–558 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Dam, T. et al. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat. Med. 27, 1451–1457 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Biogen. Biogen reports top-line results from phase 2 study in progressive supranuclear palsy. Biogen https://investors.biogen.com/news-releases/news-release-details/biogen-reports-top-line-results-phase-2-study-progressive (2019).

  • Alzforum. Gosuranemab, Biogen’s anti-tau immunotherapy, does not fly for PSP. Alzforum https://www.alzforum.org/news/research-news/gosuranemab-biogens-anti-tau-immunotherapy-does-not-fly-psp (2019).

  • Biogen. Biogen announces topline results from phase 2 study of gosuranemab, an anti-tau antibody, for Alzheimer’s disease. Biogen https://investors.biogen.com/news-releases/news-release-details/biogen-announces-topline-results-phase-2-study-gosuranemab-anti (2021).

  • Alzforum. Therapeutics: JNJ-63733657. Alzforum https://www.alzforum.org/therapeutics/jnj-63733657 (2022).

  • Galpern, W. R. et al. A single ascending dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-phospho-tau antibody JNJ-63733657 in healthy subjects [abstract P1-052]. Alzheimers Dement. 15 (7S Part 5), 252–253 (2019).


    Google Scholar
     

  • Helboe, L. et al. Highly specific and sensitive target binding by the humanized pS396-tau antibody hC10.2 across a wide spectrum of Alzheimer’s disease and primary tauopathy postmortem brains. J. Alzheimers Dis. 88, 207–228 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Umeda, T. et al. Passive immunothrapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann. Clin. Transl. Neurol. 2, 241–255 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alzforum. Therapeutics: MK-2214. Alzforum https://www.alzforum.org/therapeutics/mk-2214 (2023).

  • Naserkhaki, R. et al. cis pT231-tau drives neurodegeneration in bipolar disorder. ACS Chem. Neurosci. 10, 1214–1221 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Albayram, O. et al. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat. Commun. 8, 1000 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohsenian Sisakht, A. et al. Pathogenic cis p-tau levels in CSF reflects severity of traumatic brain injury. Neurol. Res. 44, 496–502 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, K. et al. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell 149, 232–244 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, C. et al. Cis P-tau underlies vascular contribution to cognitive impairment and dementia and can be effectively targeted by immunotherapy in mice. Sci. Transl. Med. 13, eaaz7615 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alzforum. Therapeutics: PRX005. Alzforum https://www.alzforum.org/therapeutics/prx005 (2023).

  • Prothena. Prothena reports topline phase 1 single ascending dose study results of PRX005, a novel anti-MTBR-tau antibody for the potential treatment of Alzheimer’s disease. Prothena https://ir.prothena.com/investors/press-releases/news-details/2023/Prothena-Reports-Topline-Phase-1-Single-Ascending-Dose-Study-Results-of-PRX005-a-Novel-Anti-MTBR-Tau-Antibody-for-the-Potential-Treatment-of-Alzheimers-Disease/default.aspx (2023).

  • Martenyi, F. et al. PRX005, a novel anti-MTBR tau monoclonal antibody: results from a first-in-human double-blind, placebo-controlled, single ascending dose phase 1 study [abstract P1-727]. Presented at the Alzheimer’s Association International Conference, Amsterdam, Netherlands, and Online (2023).

  • Hasegawa, M. et al. Characterization of mAb AP422, a novel phosphorylation-dependent monoclonal antibody against tau protein. FEBS Lett. 384, 25–30 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Bussiere, T. et al. Phosphorylated serine422 on tau proteins is a pathological epitope found in several diseases with neurofibrillary degeneration. Acta Neuropathol. 97, 221–230 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Alzforum. Therapeutics: RG7345. Alzforum https://www.alzforum.org/therapeutics/rg7345 (2015).

  • Ayalon, G. et al. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer’s disease. Sci. Transl. Med. 13, eabb2639 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kerchner, G. A. et al. A phase I study to evaluate the safety and tolerability of RO7105705 in healthy volunteers and patients with mild-to-moderate AD. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2017.07.243 (2017).

    Article 

    Google Scholar
     

  • AC Immune. AC Immune reports top line results from TAURIEL phase 2 trial evaluating semorinemab in early Alzheimer’s disease. AC Immune https://ir.acimmune.com/news-releases/news-release-details/ac-immune-reports-top-line-results-tauriel-phase-2-trial (2020).

  • Alzforum. First cognitive signal that tau immunotherapy works? Alzforum https://www.alzforum.org/news/research-news/first-cognitive-signal-tau-immunotherapy-works (2021).

  • Monteiro, C. et al. Randomized phase II study of the safety and efficacy of semorinemab in participants with mild-to-moderate Alzheimer disease: Lauriet. Neurology 101, e1391–e1401 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alzforum. Therapeutics: Tilvonemab. Alzforum https://www.alzforum.org/therapeutics/tilavonemab (2023).

  • West, T. et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J. Prev. Alzheimers Dis. 4, 236–241 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoglinger, G. U. et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol. 20, 182–192 (2021).

    PubMed 

    Google Scholar
     

  • Koga, S., Dickson, D. W. & Wszolek, Z. K. Neuropathology of progressive supranuclear palsy after treatment with tilavonemab. Lancet Neurol. 20, 786–787 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alzforum. AbbVie’s tau antibody flops in progressive supranuclear palsy. Alzforum https://www.alzforum.org/news/research-news/abbvies-tau-antibody-flops-progressive-supranuclear-palsy (2019).

  • Florian, H. et al. Tilavonemab in early Alzheimer’s disease: results from a phase 2, randomized, double-blind study. Brain 146, 2275–2284 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chai, X. et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J. Biol. Chem. 286, 34457–34467 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jicha, G. A., Bowser, R., Kazam, I. G. & Davies, P. Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J. Neurosci. Res. 48, 128–132 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Vitale, F. et al. Anti-tau conformational scFv MC1 antibody efficiently reduces pathological tau species in adult JNPL3 mice. Acta Neuropathol. Commun. 6, 82 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lilly. Q3 2021 earnings call. Lilly https://investor.lilly.com/events/event-details/q3-2021-earnings-call (2021).

  • Sigurdsson, E. M. Alzheimer’s therapy development: a few points to consider. Prog. Mol. Biol. Transl. Sci. 168, 205–217 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Han, P. et al. A quantitative analysis of brain soluble tau and the tau secretion factor. J. Neuropathol. Exp. Neurol. 76, 44–51 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, C. et al. Tau kinetics in neurons and the human central nervous system. Neuron 97, 1284–1298.e7 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barthelemy, N. R. et al. Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with Lewy bodies. J. Alzheimers Dis. 51, 1033–1043 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Barthelemy, N. R. et al. Tau protein quantification in human cerebrospinal fluid by targeted mass spectrometry at high sequence coverage provides insights into its primary structure heterogeneity. J. Proteome Res. 15, 667–676 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Barthelemy, N. R., Mallipeddi, N., Moiseyev, P., Sato, C. & Bateman, R. J. Tau phosphorylation rates measured by mass spectrometry differ in the intracellular brain vs. extracellular cerebrospinal fluid compartments and are differentially affected by Alzheimer’s disease. Front. Aging Neurosci. 11, 121 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagshal, D. et al. Divergent CSF tau alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 86, 244–250 (2015).

    PubMed 

    Google Scholar
     

  • Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69, 1445–1452 (2012).

    PubMed 

    Google Scholar
     

  • Hu, W. T., Trojanowski, J. Q. & Shaw, L. M. Biomarkers in frontotemporal lobar degenerations – progress and challenges. Prog. Neurobiol. 95, 636–648 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsson, B. et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 15, 673–684 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Bian, H. et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 70, 1827–1835 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Grossman, M. et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann. Neurol. 57, 721–729 (2005).

    PubMed 

    Google Scholar
     

  • Horie, K. et al. CSF tau microtubule-binding region identifies pathological changes in primary tauopathies. Nat. Med. 28, 2547–2554 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanmert, D. et al. C-terminally truncated forms of tau, but not full-length tau or its C-terminal fragments, are released from neurons independently of cell death. J. Neurosci. 35, 10851–10865 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadhav, S. et al. A walk through tau therapeutic strategies. Acta Neuropathol. Commun. 7, 22 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Novel tau filament fold in corticobasal degeneration. Nature 580, 283–287 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falcon, B. et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568, 420–423 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheres, S. H., Zhang, W., Falcon, B. & Goedert, M. Cryo-EM structures of tau filaments. Curr. Opin. Struct. Biol. 64, 17–25 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, L., Gilyazova, N., Ervin, J. F., Wang, S. J. & Xu, B. Site-specific phospho-tau aggregation-based biomarker discovery for AD diagnosis and differentiation. ACS Chem. Neurosci. 13, 3281–3290 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Reid, M. J., Beltran-Lobo, P., Johnson, L., Perez-Nievas, B. G. & Noble, W. Astrocytes in tauopathies. Front. Neurol. 11, 572850 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahlson, M. A. & Colodner, K. J. Glial tau pathology in tauopathies: functional consequences. J. Exp. Neurosci. 9, 43–50 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Ferrer, I. et al. Involvement of oligodendrocytes in tau seeding and spreading in tauopathies. Front. Aging Neurosci. 11, 112 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narasimhan, S. et al. Human tau pathology transmits glial tau aggregates in the absence of neuronal tau. J. Exp. Med. 217, e20190783 (2020).

    PubMed 

    Google Scholar
     

  • Congdon, E. E. et al. Single domain antibodies targeting pathological tau protein: influence of four IgG subclasses on efficacy and toxicity. eBioMedicine 84, 104249 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morell, A., Terry, W. D. & Waldmann, T. A. Metabolic properties of IgG subclasses in man. J. Clin. Invest. 49, 673–680 (1970).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Handlogten, M. W. et al. Prevention of Fab-arm exchange and antibody reduction via stabilization of the IgG4 hinge region. MAbs 12, 1779974 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heads, J. T. et al. Electrostatic interactions modulate the differential aggregation propensities of IgG1 and IgG4P antibodies and inform charged residue substitutions for improved developability. Protein Eng. Des. Sel. 32, 277–288 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pepinsky, R. B. et al. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis. Protein Sci. 19, 954–966 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, L. J. et al. Role of heavy chain constant domains in antibody–antigen interaction. Apparent specificity differences among streptococcal IgG antibodies expressing identical variable domains. J. Immunol. 150, 2231–2242 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Pritsch, O. et al. Can immunoglobulin C(H)1 constant region domain modulate antigen binding affinity of antibodies? J. Clin. Invest. 98, 2235–2243 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pritsch, O. et al. Can isotype switch modulate antigen-binding affinity and influence clonal selection? Eur. J. Immunol. 30, 3387–3395 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Hovenden, M. et al. IgG subclass and heavy chain domains contribute to binding and protection by mAbs to the poly γ-D-glutamic acid capsular antigen of Bacillus anthracis. PLoS Pathog. 9, e1003306 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motley, M. P., Diago-Navarro, E., Banerjee, K., Inzerillo, S. & Fries, B. C. The role of IgG subclass in antibody-mediated protection against carbapenem-resistant Klebsiella pneumoniae. mBio 11, e02059-20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tudor, D. et al. Isotype modulates epitope specificity, affinity, and antiviral activities of anti-HIV-1 human broadly neutralizing 2F5 antibody. Proc. Natl Acad. Sci. USA 109, 12680–12685 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, Y., Janda, A., Eryilmaz, E., Casadevall, A. & Putterman, C. The constant region affects antigen binding of antibodies to DNA by altering secondary structure. Mol. Immunol. 56, 28–37 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dam, T. K., Torres, M., Brewer, C. F. & Casadevall, A. Isothermal titration calorimetry reveals differential binding thermodynamics of variable region-identical antibodies differing in constant region for a univalent ligand. J. Biol. Chem. 283, 31366–31370 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janda, A. & Casadevall, A. Circular dichroism reveals evidence of coupling between immunoglobulin constant and variable region secondary structure. Mol. Immunol. 47, 1421–1425 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kato, K. et al. Carbon-13 NMR study of switch variant anti-dansyl antibodies: antigen binding and domain–domain interactions. Biochemistry 30, 6604–6610 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • McLean, G. R., Torres, M., Elguezabal, N., Nakouzi, A. & Casadevall, A. Isotype can affect the fine specificity of an antibody for a polysaccharide antigen. J. Immunol. 169, 1379–1386 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Torres, M., Fernandez-Fuentes, N., Fiser, A. & Casadevall, A. The immunoglobulin heavy chain constant region affects kinetic and thermodynamic parameters of antibody variable region interactions with antigen. J. Biol. Chem. 282, 13917–13927 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Torres, M., Fernandez-Fuentes, N., Fiser, A. & Casadevall, A. Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity. PLoS ONE 2, e1310 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres, M., May, R., Scharff, M. D. & Casadevall, A. Variable-region-identical antibodies differing in isotype demonstrate differences in fine specificity and idiotype. J. Immunol. 174, 2132–2142 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. The constant region contributes to the antigenic specificity and renal pathogenicity of murine anti-DNA antibodies. J. Autoimmun. 39, 398–411 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, R. R. et al. Isotype switching increases efficacy of antibody protection against Cryptococcus neoformans infection in mice. Infect. Immun. 66, 1057–1062 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labrijn, A. F. et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat. Biotechnol. 27, 767–771 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Young, E. et al. Estimation of polyclonal IgG4 hybrids in normal human serum. Immunology 142, 406–413 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutajangout, A., Quartermain, D. & Sigurdsson, E. M. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci. 30, 16559–16566 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • d’Abramo, C., Acker, C. M., Jimenez, H. T. & Davies, P. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS ONE 8, e62402 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hintersteiner, B. et al. Charge heterogeneity: basic antibody charge variants with increased binding to Fc receptors. MAbs 8, 1548–1560 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoch, A. et al. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Proc. Natl Acad. Sci. USA 112, 5997–6002 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khawli, L. A., Glasky, M. S., Alauddin, M. M. & Epstein, A. L. Improved tumor localization and radioimaging with chemically modified monoclonal antibodies. Cancer Biother. Radiopharm. 11, 203–215 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, H. et al. The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points. Cancer Res. 59, 422–430 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Datta-Mannan, A. et al. Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics. MAbs 7, 483–493 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B. et al. Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge. MAbs 6, 1255–1264 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee, D. et al. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson’s disease model. NPJ Parkinsons Dis. 4, 25 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, D. C. et al. Bifunctional anti-non-amyloid component α-synuclein nanobodies are protective in situ. PLoS ONE 11, e0165964 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, S. et al. bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA). Proc. Natl Acad. Sci. USA 117, 5791–5800 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim, A. F. M. et al. Antibody RING-mediated destruction of endogenous proteins. Mol. Cell 79, 155–166.e9 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth, S. et al. Targeting endogenous K-RAS for degradation through the affinity-directed protein missile system. Cell Chem. Biol. 27, 1151–1163.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-like models. Theranostics 11, 5279–5295 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. Elife 8, e45457 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, T. T. et al. Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem. Biol. 23, 453–461 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, M. et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem. 146, 251–259 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Bhatia, S., Singh, M., Singh, T. & Singh, V. Scrutinizing the therapeutic potential of PROTACs in the management of Alzheimer’s disease. Neurochem. Res. 48, 13–25 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Gallardo, G. et al. Targeting tauopathy with engineered tau-degrading intrabodies. Mol. Neurodegener. 14, 38 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, D. C. & Messer, A. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments. PLoS ONE 6, e29199 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Igawa, T., Haraya, K. & Hattori, K. Sweeping antibody as a novel therapeutic antibody modality capable of eliminating soluble antigens from circulation. Immunol. Rev. 270, 132–151 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e10 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, D. & Arimoto, H. Targeting selective autophagy by AUTAC degraders. Autophagy 16, 765–766 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawa, T. et al. Protein S-guanylation by the biological signal 8-nitroguanosine 3′,5′-cyclic monophosphate. Nat. Chem. Biol. 3, 727–735 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha-Molstad, H. et al. p62/SQSTM1/sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat. Commun. 8, 102 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, C. H. et al. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nat. Commun. 13, 904 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, W. et al. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS Nano 8, 10328–10342 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. A tauopathy-homing and autophagy-activating nanoassembly for specific clearance of pathogenic tau in Alzheimer’s disease. ACS Nano 15, 5263–5275 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, J. et al. A novel dephosphorylation targeting chimera selectively promoting tau removal in tauopathies. Signal. Transduct. Target. Ther. 6, 269 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnaswamy, S. et al. In vivo imaging of tauopathy in mice. Methods Mol. Biol. 1779, 513–526 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ising, C. et al. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J. Exp. Med. 214, 1227–1238 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nisbet, R. M. et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain 140, 1220–1230 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spencer, B. et al. Selective targeting of 3 repeat Tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol. 136, 69–87 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Y. et al. Single-domain antibody-based noninvasive in vivo imaging of α-synuclein or tau pathology. Sci. Adv. 9, eadf3775 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danis, C. et al. Inhibition of Tau seeding by targeting Tau nucleation core within neurons with a single domain antibody fragment. Mol. Ther. 30, 1484–1499 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, T. et al. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J. Control. Rel. 243, 1–10 (2016).


    Google Scholar
     

  • Marino, M. & Holt, M. G. AAV vector-mediated antibody delivery (A-MAD) in the central nervous system. Front. Neurol. 13, 870799 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. H. et al. Administration of AAV-alpha synuclein NAC antibody improves locomotor behavior in rats overexpressing alpha synuclein. Genes 12, 948 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, Y. R. et al. α-Synuclein fibril-specific nanobody reduces prion-like α-synuclein spreading in mice. Nat. Commun. 13, 4060 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. H. et al. Downregulation of α-synuclein protein levels by an intracellular single-chain antibody. J. Parkinsons Dis. 10, 573–590 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, C., Emadi, S., Sierks, M. R. & Messer, A. A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed α-synuclein. Mol. Ther. 10, 1023–1031 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Research progress and applications of multivalent, multispecific and modified nanobodies for disease treatment. Front. Immunol. 12, 838082 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jovcevska, I. & Muyldermans, S. The therapeutic potential of nanobodies. Biodrugs 34, 11–26 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 4, 202–212 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Gary-Bobo, M., Nirde, P., Jeanjean, A., Morere, A. & Garcia, M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr. Med. Chem. 14, 2945–2953 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kyttala, A., Heinonen, O., Peltonen, L. & Jalanko, A. Expression and endocytosis of lysosomal aspartylglucosaminidase in mouse primary neurons. J. Neurosci. 18, 7750–7756 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawkes, C. & Kar, S. Insulin-like growth factor-II/mannose-6-phosphate receptor: widespread distribution in neurons of the central nervous system including those expressing cholinergic phenotype. J. Comp. Neurol. 458, 113–127 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Couce, M. E., Weatherington, A. J. & McGinty, J. F. Expression of insulin-like growth factor-II (IGF-II) and IGF-II/mannose-6-phosphate receptor in the rat hippocampus: an in situ hybridization and immunocytochemical study. Endocrinology 131, 1636–1642 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Jabbari, E. & Duff, K. E. Tau-targeting antibody therapies: too late, wrong epitope or wrong target? Nat. Med. 27, 1341–1342 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Bespalov, A., Courade, J. P., Khiroug, L., Terstappen, G. C. & Wang, Y. A call for better understanding of target engagement in Tau antibody development. Drug. Discov. Today 27, 103338 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sigurdsson, E. M. T. Immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls. J. Alzheimers Dis. 64, S555–S565 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Q. et al. Increased neuronal activity in motor cortex reveals prominent calcium dyshomeostasis in tauopathy mice. Neurobiol. Dis. 147, 105165 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Giacobini, E. & Gold, G. Alzheimer disease therapy – moving from amyloid-β to tau. Nat. Rev. Neurol. 9, 677–686 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *