The Agentic AI shift: What you need to know | Brij kishore Pandey posted on the topic

The Agentic AI shift demands a very different stack โ€” not just in terms of tools, but in mindset, workflows, and design principles.

Hereโ€™s what you really need to know:

๐Ÿญ. ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ง๐—ต๐—ถ๐—ป๐—ธ๐—ถ๐—ป๐—ด ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ ๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป

Most people confuse AI agents with smart LLM wrappers. But true agents have:

ย โ€ข Goals โ€” not just tasks

ย โ€ข Context management โ€” not just one-off memory

ย โ€ข Autonomy & adaptability โ€” not just API chains

ย โ€ข Multi-agent coordination โ€” not just sequential steps

The rise of protocols like MCP (Model Context Protocol) and A2A (Agent-to-Agent) show where weโ€™re headed: agents talking, negotiating, and collaborating.

๐Ÿฎ. ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ด ๐—œ๐˜€๐—ปโ€™๐˜ ๐——๐—ฒ๐—ฎ๐—ฑ โ€” ๐—œ๐˜โ€™๐˜€ ๐—˜๐˜ƒ๐—ผ๐—น๐˜ƒ๐—ถ๐—ป๐—ด

To build agents, you still need the fundamentals:

ย โ€ข Languages: Python, JS, TypeScript, Shell
ย โ€ข Tooling: APIs, async execution, file handling, scraping

But now layered with:

ย โ€ข Prompt engineering โ†’ Chain-of-thought โ†’ Reflexion loops

ย โ€ข Goal decomposition + decision policies

ย โ€ข Tool use + action planning + retry logic

ย โ€ข Prompting is no longer a skill. Itโ€™s a system behavior.

๐Ÿฏ. ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€ ๐—”๐—ฟ๐—ฒ ๐—˜๐˜…๐—ฝ๐—น๐—ผ๐—ฑ๐—ถ๐—ป๐—ด โ€” ๐—•๐˜‚๐˜ ๐—จ๐˜€๐—ฒ ๐—ง๐—ต๐—ฒ๐—บ ๐—ช๐—ถ๐˜€๐—ฒ๐—น๐˜†

ย โ€ข Depending on your use case, youโ€™ll want to explore:

ย โ€ข LangGraph and LangChain for flexible agent flows

ย โ€ข AutoGen and CrewAI for research-style agents

ย โ€ข Flowise for visual low-code orchestrations

ย โ€ข Superagent, Semantic Kernel, and others for modular design

Each framework has strengths and trade-offs โ€” choosing one requires understanding your orchestration, memory, and collaboration needs.

๐Ÿฐ. ๐—ข๐—ฟ๐—ฐ๐—ต๐—ฒ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ถ๐˜€ ๐˜๐—ต๐—ฒ ๐—›๐—ฒ๐—ฎ๐—ฟ๐˜ ๐—ผ๐—ณ ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ๐˜€

Forget linear pipelines.

Agent systems require:

ย โ€ข DAG-based flows

ย โ€ข Event-driven triggers

ย โ€ข Conditional loops

ย โ€ข Guardrails and validations

The goal is not to run code โ€” itโ€™s to simulate reasoning and adaptation over time.

๐Ÿฑ. ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† ๐—œ๐˜€๐—ปโ€™๐˜ ๐—๐˜‚๐˜€๐˜ ๐—ฎ ๐—ฉ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐—ฆ๐˜๐—ผ๐—ฟ๐—ฒ

Real agents need:

ย โ€ข Short-term memory (context windows)

ย โ€ข Long-term memory (episodic retrieval)

ย โ€ข Dynamic knowledge integration (RAG + vector DBs)

ย โ€ข Technologies like Weaviate, Chroma, Pinecone, and FAISS make this possible โ€” but only when paired with intelligent memory policies and indexing strategies.

๐Ÿฒ. ๐—ข๐—ฏ๐˜€๐—ฒ๐—ฟ๐˜ƒ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜†, ๐—˜๐˜ƒ๐—ฎ๐—น๐˜‚๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐—š๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ฟ๐—ฒ ๐—ก๐—ผ๐—ป-๐—ก๐—ฒ๐—ด๐—ผ๐˜๐—ถ๐—ฎ๐—ฏ๐—น๐—ฒ

As agents gain autonomy, we need:

ย โ€ข Tracing & logging (LangSmith, OpenTelemetry)

ย โ€ข Human-in-the-loop evaluation

ย โ€ข Auto-evaluation loops

ย โ€ข Security: prompt injection defense, API key mgmt, RBAC, red teaming

You can’t deploy what you can’t monitor.

ย And you shouldn’t deploy what you canโ€™t secure.

The next generation of AI builders won’t just prompt LLMs โ€” they’ll design intelligent systems.

Agentic AI blends programming, reasoning, memory, orchestration, and governance into one integrated discipline.

โ€ฆitโ€™s time to think agentically.

Leave a Reply

Your email address will not be published. Required fields are marked *