The synaptic receptor Lrp4 promotes peripheral nerve regeneration

  • y Cajal, S. R. Degeneration & regeneration of the nervous system. 1, (Oxford University Press, Humphrey Milford, 1928).

  • Waller, A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos. Trans. R. Soc. Lond. 140, 423–429 (1850).

    Article 
    ADS 

    Google Scholar
     

  • Scherer, S. S. & Easter, S. S. Degenerative and regenerative changes in the trochlear nerve of goldfish. J. Neurocytol. 13, 519–565 (1984).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stoll, G., Griffin, J. W., Li, C. Y. & Trapp, B. D. Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J. Neurocytol. 18, 671–683 (1989).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fernandez-Valle, C., Bunge, R. P. & Bunge, M. B. Schwann cells degrade myelin and proliferate in the absence of macrophages: evidence from in vitro studies of Wallerian degeneration. J. Neurocytol. 24, 667–679 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Perry, V. H., Tsao, J. W., Fearn, S. & Brown, M. C. Radiation-induced reductions in macrophage recruitment have only slight effects on myelin degeneration in sectioned peripheral nerves of mice. Eur. J. Neurosci. 7, 271–280 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Taniuchi, M., Clark, H. B. & Johnson, E. M. Jr. Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc. Natl Acad. Sci. USA 83, 4094–4098 (1986).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Meyer, M., Matsuoka, I. & Wetmore, C. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peropheral nerve. J. Cell Biol. 119, 45–54 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, H. M., Yang, L. H. & Yang, Y. J. Schwann cell properties: 3. C-fos expression, bFGF production, phagocytosis and proliferation during Wallerian degeneration. J. Neuropathol. Exp. Neurol. 54, 487–496 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Höke, A., Gordon, T., Zochodne, D. W. & Sulaiman, O. A. R. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp. Neurol. 173, 77–85 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Al-Majed, A. A., Neumann, C. M., Brushart, T. M. & Gordon, T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 20, 2602–2608 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McDonald, D., Cheng, C., Chen, Y. & Zochodne, D. Early events of peripheral nerve regeneration. Neuron Glia Biol. 2, 139–9 (2005).

    Article 

    Google Scholar
     

  • Dyck, P. J. & Hopkins, A. P. Electron microscopic observations on degeneration and regeneration of unmyelinated fibres. Brain 95, 233–234 (1972).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nguyen, Q. T., Sanes, J. R. & Lichtman, J. W. Pre-existing pathways promote precise projection patterns. Nat. Neurosci. 5, 861–867 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, Y. Y. et al. Axon and Schwann cell partnership during nerve regrowth. J. Neuropathol. Exp. Neurol. 64, 613–622 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Holtzman, E. & Novikoff, A. B. Lysosomes in the rat sciatic nerve following crush. J. Cell Biol. 27, 651–669 (1965).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Arthur-Farraj, P. J. et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75, 633–647 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Woodhoo, A. et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat. Neurosci. 12, 839–847 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Le, N. et al. Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc. Natl Acad. Sci. USA 102, 2596–2601 (2005).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Scherer, S. S. The biology and pathobiology of Schwann cells. Curr. Opin. Neurol. 10, 386–397 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Remédio, L. et al. Diverging roles for Lrp4 and Wnt signaling in neuromuscular synapse development during evolution. Genes. Dev. 30, 1058–1069 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bate, C. M. Pioneer neurones in an insect embryo. Nature 260, 54–56 (1976).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Raper, J. A., Bastiani, M. & Goodman, C. S. Pathfinding by neuronal growth cones in grasshopper embryos. II. Selective fasciculation onto specific axonal pathways. J. Neurosci. 3, 31–41 (1983).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Eisen, J. S., Myers, P. Z. & Westerfield, M. Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature 320, 269–271 (1986).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Pittman, A. J., Law, M.-Y. & Chien, C.-B. Pathfinding in a large vertebrate axon tract: isotypic interactions guide retinotectal axons at multiple choice points. Development 135, 2865–2871 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kim, M., Roesener, A. P., Mendonca, P. R. F. & Mastick, G. S. Robo1 and Robo2 have distinct roles in pioneer longitudinal axon guidance. Dev. Biol. 358, 181–188 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rosenberg, A. F., Wolman, M. A., Franzini-Armstrong, C. & Granato, M. In vivo nerve-macrophage interactions following peripheral nerve injury. J. Neurosci. 32, 3898–3909 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rosenberg, A. F., Isaacman-Beck, J., Franzini-Armstrong, C. & Granato, M. Schwann cells and deleted in colorectal carcinoma direct regenerating motor axons towards their original path. J. Neurosci. 34, 14668–14681 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Isaacman-Beck, J., Schneider, V., Franzini-Armstrong, C. & Granato, M. The lh3 glycosyltransferase directs target-selective peripheral nerve regeneration. Neuron 88, 691–703 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Downes, G. B., Waterbury, J. A. & Granato, M. Rapid in vivo labeling of identified zebrafish neurons. Genesis 34, 196–202 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Weatherbee, S. D., Anderson, K. V. & Niswander, L. A. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133, 4993–5000 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ide, C., Tohyama, K., Yokota, R., Nitatori, T. & Onodera, S. Schwann cell basal lamina and nerve regeneration. Brain Res. 288, 61–75 (1983).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hall, S. M. The effect of inhibiting Schwann cell mitosis on the re-innervation of acellular autografts in the peripheral nervous system of the mouse. Neuropathol. Appl. Neurobiol. 12, 401–414 (1986).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lewis, G. M. & Kucenas, S. Perineurial Glia are essential for motor axon regrowth following nerve injury. J. Neurosci. 34, 12762–12777 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Parrinello, S. et al. EphB signaling directs peripheral nerve regeneration through Sox2-dependent schwann cell sorting. Cell 143, 145–155 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kucenas, S. et al. CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nat. Neurosci. 11, 143–151 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • DeChiara, T. M. et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 501–512 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gautam, M. et al. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377, 232–236 (1995).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Glass, D. J. et al. Agrin acts via a MuSK receptor complex. Cell 85, 513–523 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, N. et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135, 334–342 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, B. et al. LRP4 serves as a coreceptor of agrin. Neuron 60, 285–297 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, J., Lefebvre, J. L., Zhao, S. & Granato, M. Zebrafish unplugged reveals a role for muscle-specific kinase homologs in axonal pathway choice. Nat. Neurosci. 7, 1303–1309 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Irion, U., Krauss, J. & Nüsslein-Volhard, C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141, 4827–4830 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Burgess, R. W., Nguyen, Q. T., Son, Y.-J., Lichtman, J. W. & Sanes, J. R. Alternatively spliced isoforms of nerve- and muscle-derived agrin. Neuron 23, 33–44 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gillespie, S. K., Balasubramanian, S., Fung, E. T. & Huganir, R. L. Rapsyn clusters and activates the synapse-specific receptor tyrosine kinase MuSK. Neuron 16, 953–962 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ono, F., Shcherbatko, A., Higashijima, S.-I., Mandel, G. & Brehm, P. The Zebrafish motility mutant twitch once reveals new roles for rapsyn in synaptic function. J. Neurosci. 22, 6491–6498 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Choi, H. Y., Dieckmann, M., Herz, J. & Niemeier, A. Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS ONE 4, e7930 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dietrich, M. F. et al. Ectodomains of the LDL receptor-related proteins LRP1b and LRP4 have anchorage independent functions in vivo. PLoS ONE 5, e9960 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ahn, Y. et al. Multiple modes of Lrp4 function in modulation of Wnt/β-catenin signaling during tooth development. Development 144, 2824–2836 (2017).

    Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Yumoto, N., Kim, N. & Burden, S. J. Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature 489, 438–442 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, H. et al. Distinct roles of muscle and motoneuron LRP4 in neuromuscular junction formation. Neuron 75, 94–107 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Choi, H. Y. et al. APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. eLife 2, e00220 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saint-Amant, L. et al. The zebrafish ennui behavioral mutation disrupts acetylcholine receptor localization and motor axon stability. Dev. Neurobiol. 68, 45–61 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ono, F., Higashijima, S., Shcherbatko, A., Fetcho, J. R. & Brehm, P. Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse. J. Neurosci. 21, 5439–5448 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tian, Q. B. et al. Interaction of LDL receptor-related protein 4 (LRP4) with postsynaptic scaffold proteins via its C-terminal PDZ domain-binding motif, and its regulation by Ca/calmodulin-dependent protein kinase II. Eur. J. Neurosci. 23, 2864–2876 (2006).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Ahn, Y., Sims, C., Logue, J. M., Weatherbee, S. D. & Krumlauf, R. Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development 140, 583–593 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sun, X.-D. et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat. Neurosci. 19, 1010–1018 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ohazama, A. et al. Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS ONE 3, e4092 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Repulsive Wnt signaling inhibits axon regeneration after CNS injury. J. Neurosci. 28, 8376–8382 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Strand, N. S. et al. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury. Biochem. Biophys. Res. Commun. 477, 952–956 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han, B. et al. Cdc42 promotes schwann cell proliferation and migration through Wnt/β-Catenin and p38 MAPK signaling pathway after sciatic nerve injury. Neurochem. Res. 42, 1317–1324 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Parikh, P. et al. Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc. Natl Acad. Sci. USA 108, E99–107 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, J. & Zou, H. BMP signaling in axon regeneration. Curr. Opin. Neurobiol. 27, 127–134 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245, 978–982 (1989).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Pike, S. H., Melancon, E. F. & Eisen, J. S. Pathfinding by zebrafish motoneurons in the absence of normal pioneer axons. Development 114, 825–831 (1992).

    PubMed 
    CAS 

    Google Scholar
     

  • Klose, M. & Bentley, D. Transient pioneer neurons are essential for formation of an embryonic peripheral nerve. Science 245, 982–984 (1989).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Hidalgo, A. & Brand, A. H. Targeted neuronal ablation: the role of pioneer neurons in guidance and fasciculation in the CNS of Drosophila. Development 124, 3253–3262 (1997).

    PubMed 
    CAS 

    Google Scholar
     

  • Mullins, M. C., Hammerschmidt, M., Haffter, P. & Nüsslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189–202 (1994).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Granato, M. et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399–413 (1996).

    PubMed 
    CAS 

    Google Scholar
     

  • Thermes, V. et al. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech. Dev. 118, 91–98 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *