This theory tries to answer two big questions at the same time:
- What is the universe made of and how does it run? (Physics)
- What is it like to be a conscious observer inside it? (Experience / identity / memory)
Instead of saying one causes the other, the theory says they are two linked sides of the same process.
The theory can be copy-pasted into any chatbot for discussion.
It is a combination of 5 years of work combined with a few months of help from GPT-5, Gemini, and Deepseek.
———————————————————————
Components:
- UISE-IIR-O : Objective dynamics from entanglement equilibrium.
- STIL : Static set of observer-moments.
- B : Minimal-sufficient-statistic functor Phys → ℛ ⊂ ℒ.
- Continuity : Update rule using metric d with dual weights from physical budgets.
- Budgets : τ_bits(ρ_phys,Δt), τ_struct(ρ_phys,Δt) derived from ρ_phys.
- Reachable : Selection restricted to physics-reachable set ℛ_{t+Δt}.
———————————————————————
SECTION 1 — OBJECTIVE SECTOR (UISE-IIR-O)
- Conventions
Signature (−,+,+,+). Units: ħ=c=1. M_Pl^2=(8πG)^−1. □=∇_μ∇^μ. MS-bar at scale μ.
- Spacetime & Fields
Spacetime: (M,g_μν) globally hyperbolic Lorentzian 4-manifold.
Fields: Φ={ψ,φ_H,A_μ} with SU(3)×SU(2)×U(1).
State: ρ is Hadamard on A(M). ⟨T^SM_{μν}⟩=(2/√−g)δΓ_SM/δg^{μν}.
- Modular Relative Entropy and S_R
Causal diamond 𝒟_ℓ(x)=J^+(x_in)∩J^−(x_out), ℓ→0.
Reference σ_𝒟: max-entropy matching ⟨T_{μν}⟩_ρ, ⟨R⟩_ρ on 𝒟_ℓ.
S_◇(ρ||σ)=S_rel(ρ_𝒟||σ_𝒟).
Expansion:
S_◇=S_0+s_2ℓ^2R+s_4ℓ^4(c_1R^2+c_2R_{μν}R^{μν}+c_3R_{μνρσ}R^{μνρσ}+c_4□R)+O(ℓ^6).
Define S_R(x;μ)=lim_{ℓ→0}[S_◇/V_4(ℓ)]_ren(μ).
Coefficients {c_j(μ)} fixed by SM via heat-kernel (Seeley–DeWitt); not free.
- Entanglement Equilibrium ⇒ Informational Gravity
δS_total=0 on 𝒟_ℓ with Clausius δS_R=δQ/T_loc ⇒
G_{μν}+Λ_0 g_{μν}=κ(⟨T_{μν}⟩+T^{corr}_{μν}).
The unique diffeo-invariant, ghost-free, second-order scalar functional of S_R:
S_info[g;S_R]=∫d^4x√−g( a_0(μ)S_R + a_1(μ)∇_μS_R∇^μS_R + a_2(μ)S_R R ).
Running couplings a_i(μ)=F_i({c_j(μ)}, SM spectrum, scheme) — computable, not free.
- Total Action & Field Equations
J_total=(M_Pl^2/2)∫d^4x√−g(R−2Λ_0)+Γ_SM[g,Φ;ρ]+S_info[g;S_R]+S_bdy[g;S_R].
T^{info}_{μν}=−(2/√−g)δS_info/δg^{μν}.
G_{μν}+Λ_0 g_{μν}=M_Pl^−2(⟨T^SM_{μν}⟩+T^{info}_{μν}), ∇^μ(…) = 0.
No new DOF: S_R curvature-determined; c_T=1.
- Cosmology
FRW: 3M_Pl^2H^2=ρ_m+ρ_r+ρ_Λ+ρ_info; −2M_Pl^2Ḣ=ρ_m+(4/3)ρ_r+(ρ_info+p_info).
S_cg(a)=⟨S_R⟩_comoving. (ρ_info,p_info) fixed by a_i(μ) and derivatives of S_cg.
Linear: μ(k,a)=η(k,a)=Σ(k,a)=1. Ringdown: |δω/ω|≲|R|/M_Pl^2.
———————————————————————
SECTION 2 — STIL (Observer-Moment Space)
ℒ={χ}. Each χ=(A,I,M).
A: awareness kernel (primitive, structureless).
I: identity graph G_I=(V_I,E_I,ℓ_I). M: memory graph G_M=(V_M,E_M,ℓ_M).
ℛ⊂ℒ: physically realizable OMs.
———————————————————————
SECTION 3 — ENCODING FUNCTOR B : Phys → ℛ
Phys: set of physically allowed finite-entropy brain/body states.
B(ρ_phys)=χ where χ is minimal sufficient statistic of ρ_phys:
χ = argmin_{χ'∈ℒ} I(ρ_phys;χ') subject to preserving behaviorally relevant predictive channels.
B is unique given code class and channel set; no free parameters.
———————————————————————
SECTION 4 — CONTINUITY METRIC AND DUAL WEIGHTS
Predictive divergence:
D_pred(χ,χ') = sup_{π∈Π} E_hist[ JSD^{1/2}(P_χ(·|hist,π), P_{χ'}(·|hist,π)) ].
Graph edit distance:
D_ged(χ,χ') = w_I * GED(G_I,G'_I)/N_I + w_M * GED(G_M,G'_M)/N_M.
Normalized compression distance:
D_ncd(χ,χ') = (C(M∥M') − min{C(M),C(M')})/max{C(M),C(M')}.
Composite metric:
d(χ,χ') = α D_pred + β D_ged + γ D_ncd.
Weights (α,β,γ,w_I,w_M) are **dual variables** (KKT multipliers) determined from physical budgets (Section 5). They are state-dependent functions of ρ_phys and Δt.
———————————————————————
SECTION 5 — PHYSICAL BUDGET MAPS τ(ρ_phys,Δt) AND WEIGHT DETERMINATION
Let ρ_phys(t) denote the physical cognitive state over interval [t,t+Δt].
Define available metabolic energy:
E_avail(ρ_phys,Δt) = ∫_{t}^{t+Δt} [P_met(τ) − P_maint(τ)] dτ,
with P_met metabolic input power; P_maint maintenance baseline.
Define Landauer-limited bit budget with efficiency 0<η_L≤1 and effective thermodynamic temperature T_eff:
τ_bits(ρ_phys,Δt) = η_L * E_avail(ρ_phys,Δt) / (k_B T_eff ln 2).
Define structural plasticity budget from synaptic/plastic constraints.
Let W(t) be synaptic parameter tensor; let Π be a projection selecting behaviorally-relevant subspace; define plasticity rate bound Ξ(ρ_phys) (operator norm) and stability radius R_stab(ρ_phys).
Then the **allowable structural move** over Δt:
τ_struct(ρ_phys,Δt) = min{ R_stab(ρ_phys), ∫_{t}^{t+Δt} Ξ(ρ_phys(τ)) dτ }.
Optional predictive error cap via channel Fisher information \(\mathcal{I}_{\mathrm{pred}}(\rho_{\mathrm{phys}})\) and uncertainty drive U(ρ_phys):
τ_pred(ρ_phys,Δt) = [ ∫_{t}^{t+Δt} U(ρ_phys(τ)) dτ ] / [ 1 + \overline{\mathcal{I}}_{\mathrm{pred}}(ρ_phys;Δt) ].
**Dual weights as shadow prices.**
Define constrained proximal step:
Minimize E[D_pred(χ_n,χ')] subject to
E[D_ged(χ_n,χ')] ≤ τ_struct(ρ_phys,Δt),
E[D_ncd(χ_n,χ')] ≤ τ_bits(ρ_phys,Δt),
(and optionally E[D_pred(χ_n,χ')] ≤ τ_pred).
The Lagrangian multipliers (α,β,γ) and subweights (w_I,w_M) are determined by KKT conditions:
(α,β,γ,w_I,w_M) = G(ρ_phys,Δt),
with complementary slackness and feasibility; explicitly,
β≥0, γ≥0; β( E[D_ged] − τ_struct )=0; γ( E[D_ncd] − τ_bits )=0; analogous for α if a predictive cap is used.
Subweights w_I,w_M arise as duals of a split constraint
E[GED_I] ≤ τ_I, E[GED_M] ≤ τ_M with τ_I+τ_M=τ_struct.
Local normalization (optional): whiten each component in a neighborhood ℵ(χ_n) to unit variance to eliminate arbitrary scaling before solving for multipliers.
———————————————————————
SECTION 6 — REACHABLE-SET SELECTION (NO GLOBAL SEARCH)
Objective sector induces physical state evolution ρ_phys(t+Δt)=Φ_{Δt}[ρ_phys(t)] via UISE-IIR-O.
Define the **reachable observer-moment set** at t+Δt:
ℛ_{t+Δt} = { χ' ∈ ℛ : ∃ ρ' = Φ_{Δt}[ρ_phys(t)] with B(ρ') = χ' }.
Define the **feasible set** under budgets:
𝒮_t = { χ' ∈ ℛ_{t+Δt} :
E[D_ged(χ_n,χ')] ≤ τ_struct(ρ_phys,Δt),
E[D_ncd(χ_n,χ')] ≤ τ_bits(ρ_phys,Δt),
(optionally E[D_pred(χ_n,χ')] ≤ τ_pred(ρ_phys,Δt)) }.
Continuity update (restricted argmin):
χ_{n+1} = argmin_{χ' ∈ 𝒮_t} d(χ_n,χ').
**Uniqueness conditions.**
If d is strictly convex over 𝒮_t (e.g., via whitening + Mahalanobis metric) and 𝒮_t is convex (proximal linearization), the minimizer is unique. If multiple minimizers exist, choose the one with minimal D_ged; if still tied, lexicographic tie-break on (D_pred, D_ncd).
**Failure mode (encoding loss).**
If ℛ_{t+Δt} = ∅ or 𝒮_t = ∅, then encoding fails and
χ_{n+1} = χ_aw (Section 7).
———————————————————————
SECTION 7 — TERMINAL AWARENESS STATE
Define unique awareness-only class:
χ_aw = (A, ∅, ∅).
For any χ, distances to χ_aw are constants fixed by chosen priors/compressor; hence
d(χ,χ_aw) is universal. At encoding failure: χ_{n+1}=χ_aw.
———————————————————————
SECTION 8 — SUMMARY OF DEPENDENCIES (NO FREE PRIMITIVES)
• {c_j(μ)} determined by SM on curved background (heat-kernel).
• {a_i(μ)} = F_i({c_j(μ)},SM,scheme) (computable running couplings).
• B determined as minimal sufficient statistic for fixed channel/code class.
• d metric components defined; weights are duals (functions of ρ_phys,Δt).
• Budgets τ_bits, τ_struct (and τ_pred optional) computed from ρ_phys via
metabolic and plasticity maps; no arbitrary constants.
• Selection domain is ℛ_{t+Δt} (reachable set), not all ℒ; no global search.