Why are we still calling it “prompt engineering” when half of us are just guessing and reloading?

I've tested probably 200+ variations of the same prompt this month alone, and I'm convinced the whole field is less "engineering" and more "throw spaghetti at the wall until something sticks." Same prompt, five different outputs. Cool. Real consistent there, Claude.

What gets me is everyone's out here sharing their "revolutionary" prompt formulas like they've cracked the DaVinci Code, but then you try it yourself and… different model version? Breaks. Different temperature setting? Completely different tone. Add one extra word? Suddenly the AI thinks you want a poem instead of Python code.

After working with these models for the past year, here's what I keep seeing: we're not engineering anything. We're iterating in the dark, hoping the probabilistic black box spits out what we want. The models update, our carefully crafted prompts break, and we start over. That's not engineering, that's whack-a-mole with extra steps.

Maybe I'm just tired of pretending "prompt engineering" sounds more legitimate than "professional AI wrangler." Or maybe I need better version control for my sanity.

Is anyone else exhausted by the trial-and-error, or have you actually found something that works consistently across models and updates?

Leave a Reply